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Stability analysis of a two-dimensional vortex pattern

I. M. Lansky* and T. M. O’Neil
Physics Department, University of California at San Diego, La Jolla, California 92093

~Received 14 August 1996!

A normal mode analysis of perturbations on a stationary pattern formed by two-dimensional point vortices
is carried out. The pattern is comprised ofN equal vortices on a circle and one vortex of arbitrary strength in
the center. The influence of an outer circular boundary is taken into account. The complete eigenfrequency
spectrum is derived.@S1063-651X~97!11306-X#

PACS number~s!: 47.32.Cc, 03.40.Gc
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I. INTRODUCTION

The dynamics of two-dimensional point vortices has be
the subject of theoretical and experimental studies for m
years ~see, e.g., Ref.@1# and literature cited therein!. This
idealized model has been used to describe two-dimensi
~2D! vortex phenomena in various media including norm
fluids @2#, superfluid helium@3#, and magnetized nonneutra
plasmas@4#. Special emphasis has been placed on the sta
ity of different vortex patterns, and a summary catalog c
ering many patterns has been compiled@5#. The history of
this problem dates back to Thomson’s@6# essay in 1883,
where he carried out a normal mode analysis of perturbat
on the ‘‘classical’’ vortex polygon. This system consists
N equal point vortices symmetrically spaced on the circu
ference of a circle. Thomson considered special ca
N53–7. Later Havelock@7# generalized the analysis to a
bitraryN and also included the effect of a circular bounda
The same system, but with no boundary and with a po
vortex of arbitrary strength located in the center of the circ
was partially treated in Ref.@8#. The most thorough analyti
cal approach was developed in Ref.@9#, where the whole se
of normal modes and corresponding eigenfrequencies
derived for the case that includes the central vortex, but
boundary. However, the discussion of the bounded vo
pattern ~which is the most relevant from the experimen
point of view! was restricted to numerical results@9#. The
present paper contains an analytical treatment of this c
taking into account both central vortex and boundary effe
Besides their theoretical interest, the results of this work
be directly applied to recent experiments@10#, in which the
stability of the very same vortex pattern was studied in
magnetized electron plasma. Also stability issues conside
in our paper substantially affect experiments@11# where the
free relaxation of 2D turbulence in a magnetized elect
column led to the formation of long-lived vortex crystals.

II. BASIC EQUATIONS

Consider a set of two-dimensional point vortices orien
parallel to thez direction and surrounded by an outer circu
boundary of radiusR. In a reference frame that rotates

*Permanent address: Budker Institute of Nuclear Physics, Nov
birsk, Russia 630090.
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frequencyV around thez axis, the dynamics of such a sys
tem is governed by the Hamiltonian~see, e.g., Ref.@9#!

H5
1

2(n (
kÞn

gngklnuzn2zku2

2
1

2(n (
k

gngklnuzn2 ẑku22VL, ~1!

where zk5xk1 iyk is a complex number representing th
kth vortex position in the (x,y) plane, gk is the vortex
strength~its total circulation!, L is the angular momentum o
the vortices

L5(
n

gnuznu2, ~2!

ẑk5R2/ z̄ k is the position of the image vortex due to th
boundary, and the overbar denotes a complex conjugate.
first term in Eq.~1! describes the interaction energy betwe
the vortices themselves, the second term results from
interaction between the vortices and the images, and the
term arises from the rotation. Hamilton’s equations of m
tion are

ign ż̄ n5
]H

]zn
, ~3!

having the explicit form

i ż̄ n52V z̄ n1 (
kÞn

gk

zn2zk
2(

k

gk

zn2 ẑk
. ~4!

Now consider the equilibrium (żn
(0)50), in whichN equal

point vortices are symmetrically arranged in a circle,

zn
~0!5exp$ iwn%, wn52pn/N, gn51, n51, . . . ,N,

~5!

and one vortex of arbitrary strength is located in the cente
the circle,

z0
~0!50, g05g. ~6!

Here we use a normalization where each vortex in the ci
has strengthgn51 and is positioned at radiusuzn

(0)u51. Us-
i-
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ing Eqs.~4!–~6!, one can obtain the following expression f
the equilibrium frequencyV0:

V05g2
N11

2
1

N

12pN
, ~7!

where p51/R2. The derivation of Eq.~7! is completely
analogous to that of Eq.~17! from Ref. @7#.

To study the linear stability of perturbations on the po
gon, we carry out a normal mode analysis and obtain
eigenfrequency spectrum. Introducing the infinitesimal d
placementsdzk of the vortices from their equilibrium posi
tions and linearizing Hamilton’s equations in these pertur
tions yield

id ż̄052V0d z̄02 (
k51

N
dz02dzk
zk

~0!2 1 (
k51

N
dz02d ẑk

ẑk
~0!2

1gpd z̄0 ,

~8!

id ż̄ n52V0d z̄ n2 (
k51
kÞn

N
dzn2dzk

~zn
~0!2zk

~0!!2
1 (

k51

N
dzn2d ẑk

~zn
~0!2 ẑk

~0!!2

2g
dzn2dz0
zn

~0!2 1gp d z̄0 . ~9!

Since the equilibrium polygon is symmetrical with respe
to rotations, the normal modes can be searched for in
form of a superposition of azimuthal waves:

dz05ac~ t !, ~10!

dznexp$2 iwn%5 (
m50

N21

am~ t !exp$ imwn%, ~11!

wherewn is defined by Eq.~5!. On the left-hand side of Eq
~11! we have introduced an additional exponential factor t
produces a rotation of the reference frame through the a
2wn . After such a rotation, the equilibrium position of th
nth vortex is on thex axis of the rotated frame. Thus eac
vortex is treated on an equal footing and the analysis is s
plified.

It is worth noting that perturbations~10! and ~11! leave
H andL unchanged to first order. This may be significant
some excitation mechanisms sinceH and L are conserved
under the dynamics. To understand thatL does not suffer a
first-order change~i.e., dL50), note that perturbation~11!
does not change the mean-square radius of the vortex
and that the displacement of the central vortex contribute
the angular momentum only in second order. Also, for t
geometry, Aref@12# has shown that the perturbation inH is
proportional to the perturbation in L @i.e.,
dH52(V0 /2)dL50#. Finally, we note that a perturbatio
that moves each vortex on the ring radially by the sa
amount, that is, makes a first-order change in the me
square radius, simply establishes a new equilibrium an
uninteresting dynamically.

Inserting Eqs.~10! and ~11! into Eqs. ~8! and ~9! and
selecting terms with the same exponential factor yield eq
tions for theam’s. These equations can be divided into tw
e
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groups. The first group describes the evolution of theam’s
for mÞ1,N21. These equations,

ǡm5 i āmFV02Fm2
p

~12p!2G
1 iaN2mFGm2T2

p2

~12p!2
1gG , ~12!

show thatām is coupled only toaN2m . Here we should note
that a0 is identical toaN . The second group of equation
describes the evolution ofa1 , aN21, andac :

ǡ c5 i ~V02gp!a c̄2 iNa12 ipNāN21 , ~13!

ǡN215 i āN21FV02FN212
p

~12p!2G
1 ia1Fg2T2

p2

~12p!2G2 igpā c , ~14!

ǡ15 i ā1FV02F12
p

~12p!2G1 iaN21Fg2T2
p2

~12p!2G
2 igac . ~15!

Here the following definitions have been used:

Gm5 (
k51

N21
12exp$ i ~m11!wk%

~12exp$ iwk%!2
, ~16!

Fm5 (
k51

N21
pexp$ i ~12m!wk%

~p2exp$ iwk%!2
, ~17!

T5 (
k51

N21
p2

~p2exp$ iwk%!2
. ~18!

The calculation of these sums is carried out in the Append
Following the terminology of Ref.@9#, the modes governed
by Eq.~12! will be referred to as ‘‘rational’’ modes and thos
governed by Eqs.~13!–~15! will be referred to as ‘‘cubic’’
modes.

It should be noted that forN52 ~vortices on a line! a1
andaN21 are identical and Eqs.~13!–~15! become invalid.
This case requires special treatment and will be conside
separately in Sec. IV.

III. RATIONAL MODES, N>2

Fixing somem and assumingam;exp$2ivt%, one ob-
tains from Eq.~12!, after routine algebra,

vm
~6 !5Sm6~PmQm!1/2, m50,2, . . . ,N22, ~19!

where

Sm52
mN~pN2m1pm!

2~12pN!
1
N2pN2m~12p2m!

2~12pN!2
, ~20!
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Pm5
m~N2m!

2
2
N2pN2m~12pm!2

2~12pN!2
1
mN~pN2m2pm!

2~12pN!
,

~21!

Qm52g1N212
m~N2m!

2
1
2NpN

12pN
1
mN~pN2m2pm!

2~12pN!

2
N2pN2m~11pm!2

2~12pN!2
. ~22!

The symmetry of coefficients~20!–~22!,

Sm52SN2m , Pm5PN2m , Qm5QN2m , ~23!

leads to the relations

vm
~6 !25vN2m

~7 !2 . ~24!

Hence Eq.~19! determinesN22 values for the set ofvm
2 .

The mode withm50 has zero eigenfrequency and corr
sponds to the rigid rotation of the vortex pattern through
fixed angle. In the limitg50, eigenfrequencies~19! coincide
with those of Eq.~26! from Ref. @7#, while for the case with
no boundaryp50 Eq.~19! reduces to Eq.~25! from Ref.@8#.

As followed from Eq. ~19!, the mode is stable if
PmQm.0. Using the symmetry relations~23!, we can show
thatPm.0, so the stability criterion is simply

min@Qm#.0, ~25!

where

min@Qm#5HQN/2 for evenN

Q~N61!/2 for oddN.
~26!

The explicit form of Eq.~25! is given by

g.
N228N18

16
2

NpN

12pN
1

N2pN/2

4~12pN/2!2
~27!

for evenN and by

g.
N228N17

16
2

NpN

12pN
2
N~N21!~p~N11!/22p~N21!/2!

8~12pN!

1
N2p~N11!/2~11p~N21!/2!2

4~12pN!2
~28!

for oddN. If there is no central vortexg50, Eq. ~27! fol-
lows from Eq.~29! of Ref. @7#. In the limit with no boundary
p50, criteria ~27! and ~28! are identical to Eqs.~29! from
Ref. @8#.

IV. CUBIC MODES, N>2

For solutions of the form exp$2ivt% @Eqs. ~13!–~15!#
yield

FS11 1

2
~P11Q1!2vG ā11

1

2
~Q12P1!aN212gac50,

~29!
-
a

1

2
~P12Q1!ā11FS12 1

2
~P11Q1!2v GaN211gpac50,

~30!

Nā11pNaN211~gp2V02v!ac50, ~31!

with S1 ,P1 ,Q1 given by Eqs.~20!, ~21!, and ~22!, respec-
tively. The corresponding eigenfrequency equation takes
form

v31c2v
21c1v1c050, ~32!

where

c25~V02gp22S1!, ~33!

c15gN~12p2!2P1Q11S1@S122~V02gp!#, ~34!

c05
1

2
gN~11p2!~P11Q1!1gpN~P12Q1!

2gN~12p2!S11~gp2V0!~Q1P12S1
2!. ~35!

With no central vortex (g50), Eqs.~29! and ~30! decouple
from Eq. ~31! and the eigenvalues are found to be

v65S16~P1Q1!
1/2, ~36!

v*52V0 . ~37!

Frequencies~36!, when combined with frequencies~19!, lead
to spectrum~26! from Ref. @7#. The formal solutionv* is
not of interest since for this normal modea15aN2150 and
hence the vortex positions are not perturbed.

In the absence of the boundaryp50, coefficients~33!–
~35! are substantially simplified, and one obtains from E
~32!

v*52V0 , v6
2 5

1

4
~N21!22g. ~38!

Here the frequencyv* corresponds to the mode of the rig
displacement of the vortex pattern~in the laboratory frame of
reference this mode has zero frequency!. The eigenvalues
v6 follow from Eq. ~35! of Ref. @9#.

The exact analytical expressions for solutions of the cu
equation~19! are too cumbersome to be presented here
the general case, the stability criterion for the cubic mod
can be written as

4@3c12~c2!
2#31@2~c2!

329c1c2127c0#
2,0, ~39!

wherec2 ,c1, andc0 are defined in Eqs.~33!, ~34!, and~35!,
respectively.

V. VORTICES ON LINE, N52

As already noted in Sec. II, Eqs.~13!–~15! are not valid
for the caseN52 since instead of two different amplitude
a1 and aN21 there is onlya1. Three amplitudes, namely
a0 ,a1, andac , appear in the problem. Equations for the
time evolution are derived in the same way as for Eqs.~12!–
~15!. The amplitudea0 is still governed by Eq.~12! and
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yields the eigenfrequencyv050, which corresponds to th
rigid rotation of the vortex pattern through a fixed angle. T
coupled equations fora1 andac are found to be

ǡ15 i ā1

1

2
~Q11P1!1 ia1

1

2
~Q12P1!2 igpā c2 igac ,

~40!

ǡ c5 ia c̄

1

2
~Q̃1 P̃!1 iac

1

2
~Q̃2 P̃!2 i2a12 i2pā1 ,

~41!

with Q1 andP1 given by Eqs.~22! and ~21!, respectively,
and

Q̃5V02gp12~12p2!, P̃5V02gp22~12p2!.
~42!

The associated eigenfrequency equation yields

v41b1v
21b050, ~43!

where

b154g~12p2!2Q1P12Q̃P̃, ~44!

b054g2~12p2!222gQ̃Q1~12p!222g P̃P1~11p!2

1Q1P1Q̃P̃. ~45!

Without the central vortex,g50, Eq.~40! decouples from
Eq. ~41! and the eigenfrequencies are given by

~v1!
25Q1P1 , ~v* !25Q̃P̃. ~46!

The first of these expressions is the same as Eq.~26! of Ref.
@7#. The second one corresponds to a normal mode with
vortex displacementsa150 and hence can be ignored in th
limit.

The coefficients in Eqs.~40! and ~41! are particularly
simple for the casep50 ~no boundary! and one finds the
eigenvalues

~v* !25V0
2 , ~v1!

25V0
22~21g!2. ~47!

Herev* corresponds to a mode of rigid displacement of
vortex pattern. The second expression is identical to Eq.~22!
obtained in Ref.@8#.

The calculation of the eigenfrequencies from Eq.~43! in
the general case is elementary, but the final formulas
fairly cumbersome. It can be shown that (b1)

224b0.0 for
e

o

e

re

arbitraryg and 0,p,1, so the stability criterion following
from Eq. ~43! reduces to the requirement

6@~b1!
224b0#

1/2.b1 . ~48!
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APPENDIX

The expression forGm was calculated in Ref.@8# and is
given by

Gm5
1

2
~m21!@m2~N21!#. ~A1!

SumsT andFm can be written in the form

T5p2
]

]p(
k51

N21
exp$2 iwk%

12pexp$2 iwk%
, ~A2!

Fm5p
]

]p(
k51

N21
exp$2 imwk%

12pexp$2 iwk%
. ~A3!

One can rewrite the sums entering Eqs.~A2! and ~A3! as

2
N21

p
1
1

p(
k51

N21
1

12pexp$2 iwk%
, ~A4!

1

pm(
k51

N21
1

12pexp$2 iwk%
2

1

pm(s50

m

ps(
k51

N21

exp$2 iswk%,

~A5!

where the double sum in Eq.~A5! can be easily calculated
Equations~16! of Ref. @7# give

(
k51

N21
1

12pexp$2 iwk%
5

N

~12pN!
2

1

~12p!
. ~A6!

Substituting Eqs.~A4!–~A6! into Eqs.~A2! and~A3! yields,
after some algebra,

T52
p2

~12p!2
1

NpN

~12pN!2
~pN1N21!, ~A7!

Fm52
p

~12p!2
1

NpN2m

~12pN!2
~mpN1N2m!. ~A8!

Equations ~A7! and ~A8! hold for N.2. For the case
N52, the corresponding expressions are trivially obtain
from Eqs.~20!–~22!:

G05
1

2
, G150, T5

p2

~11p!2
, ~A9!

F052
p

~11p!2
, F15

p

~11p!2
. ~A10!
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