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Stability analysis of a two-dimensional vortex pattern
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A normal mode analysis of perturbations on a stationary pattern formed by two-dimensional point vortices
is carried out. The pattern is comprisedMfequal vortices on a circle and one vortex of arbitrary strength in
the center. The influence of an outer circular boundary is taken into account. The complete eigenfrequency
spectrum is derived.S1063-651X%97)11306-X]

PACS numbdps): 47.32.Cc, 03.40.Gc

I. INTRODUCTION frequency() around thez axis, the dynamics of such a sys-
tem is governed by the Hamiltonigeee, e.g., Ref9])
The dynamics of two-dimensional point vortices has been

the subject of theoretical and experimental studies for many H= EE D In|z,— 2,2
years(see, e.g., Refl1] and literature cited thereinThis 2% &n Yn Vil en™ %
idealized model has been used to describe two-dimensional L
(2D) vortex phenomena in various media including normal A
fluids [2], superfluid heliun{3], and magnetized nonneutral _izn: % nvdn|za—zd*-OL, @
plasmag4]. Special emphasis has been placed on the stabil-
ity of different vortex patterns, and a summary catalog covwhere z,=x,+iy, is a complex number representing the
ering many patterns has been compil&l The history of kth vortex position in the X,y) plane, v, is the vortex
this problem dates back to Thomson®] essay in 1883, strength(its total circulation, L is the angular momentum of
where he carried out a normal mode analysis of perturbationthe vortices
on the “classical” vortex polygon. This system consists of
N equal point vortices symmetrically spaced on the circum- L=E 12,2
ference of a circle. Thomson considered special cases o Ynl%nl™
N=3-7. Later Havelock7] generalized the analysis to ar-
bitrary N and also included the effect of a circular boundary.z,=R?/ z, is the position of the image vortex due to the
The same system, but with no boundary and with a poinboundary, and the overbar denotes a complex conjugate. The
vortex of arbitrary strength located in the center of the circle first term in Eq.(1) describes the interaction energy between
was partially treated in Ref8]. The most thorough analyti- the vortices themselves, the second term results from the
cal approach was developed in Ri], where the whole set interaction between the vortices and the images, and the last
of normal modes and corresponding eigenfrequencies wagrm arises from the rotation. Hamilton’s equations of mo-
derived for the case that includes the central vortex, but néion are
boundary. However, the discussion of the bounded vortex
pattern (which is the most relevant from the experimental . =— JH
point of view) was restricted to numerical resufi8]. The YnZn=5; )
present paper contains an analytical treatment of this case
taking into account both central vortex and boundary effectshaving the explicit form
Besides their theoretical interest, the results of this work can
be directly applied to recent experimehis)], in which the — — o Yk
stability of the very same vortex pattern was studied in a 1Zn= _an“Lk;n Z _Zk_zk ;5 (4)
magnetized electron plasma. Also stability issues considered " nook
in our paper substantially affect experimeptd] where the
free relaxation of 2D turbulence in a magnetized electron
column led to the formation of long-lived vortex crystals. P

@

Now consider the equilibriumz®=0), in whichN equal
oint vortices are symmetrically arranged in a circle,

Z9=explien), @n=2mnIN, y,=1, n=1,...N,
II. BASIC EQUATIONS (5)

Consider a set of two-dimensional point vortices orientedand one vortex of arbitrary strength is located in the center of
parallel to thez direction and surrounded by an outer circular the circle,

boundary of radiuRR. In a reference frame that rotates at

=0, yo=7. ©)
*Permanent address: Budker Institute of Nuclear Physics, Novosklere we use a normalization where each vortex in the circle
birsk, Russia 630090. has strengthy,=1 and is positioned at radiys{”)|=1. Us-
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ing Egs.(4)—(6), one can obtain the following expression for groups. The first group describes the evolution of theés

the equilibrium frequency): for m#1,N—1. These equations,
N+1 N —  — p
QO='y—T+1_—pN, (7) am=iam Qo—Fn— —(1_p)2

2

—1/R2 Uati i
where p=1/R*. The derivation of Eq.(7) is completely +iaNm[Gm—T— (1Ep)2+7

analogous to that of Eq17) from Ref.[7].
To study the linear stability of perturbations on the poly-

gon, we carry out a normal mode analysis and obtain thgnow thata,, is coupled only tax_ . Here we should note

eigenfrequency spectrum. Introducing the infinitesimal disthat , is identical toay. The second group of equations
placementssz, of the vortices from their equilibrium posi- describes the evolution af;, ay_;, anda:

tions and linearizing Hamilton’s equations in these perturba-

; (12)

tons yied ac=i(Qo—yp)ac—iNay—ipNay_1, (13
N N ~
L — 0Zy— 0Zy 0Zy— Oy —
102g=—Qp0zp— + - +ypdz,, . '_ P
0 00Zp 121 2072 gl 702 YPoZy T P QO_FNl_(l_p)z}
8 ,
. p R
isT——0 52—_% 6z,— 6z N N 5z,— 62, tlag y=T= m}—lvpac. (14)
" TN &L (V-0 &L (20-20)2
k#n D D . p2
8z,— 52, o a;=ia; QO_Fl_W +ian_1 'y—T—W
—Y oz TP 9Zo. 9 _
" —lyac. (15)

Since the equilibrium polygon is symmetrical with respectqo e the following definitions have been used:
to rotations, the normal modes can be searched for in the

form of a superposition of azimuthal waves: N-1 1—expli(m+1) gy}

Gn= . , 16
52p=ay(t), (10) " k; (1—expliew)? 18
N—1 N—1 .

_ : pexp{i (1—m) gy}
S - = t , 11 Fn= . , 1
Z,exp{ — i @n} mE:O am(t)explime,} (11 m kzl (p—exp{lcpk})z (17)
where g, is defined by Eq(5). On the left-hand side of Eq. N-1 p?
(11) we have introduced an additional exponential factor that T= 2 . (19
produces a rotation of the reference frame through the angle =1 (p—expliewt)

— ¢, . After such a rotation, the equilibrium position of the ) ) ) . _
nth vortex is on thex axis of the rotated frame. Thus each |N€ calculation of these sums is carried out in the Appendix.

vortex is treated on an equal footing and the analysis is simt-0!lowing the terminology of Refl9], the modes governed
plified. by Eq.(12) will be referred to as rational” modes and those
It is worth noting that perturbationd0) and (11) leave ~ 90verned by Eqs13)—(15) will be referred to as “cubic

H andL unchanged to first order. This may be significant formodes. _ _

some excitation mechanisms sinBeand L are conserved |t should be noted that foN=2 (vortices on a ling a;

under the dynamics. To understand thatioes not suffer a aNd @n-1 are identical and Eq$13)—(15) become invalid.

first-order changdi.e., 5L=0), note that perturbatiofL1) This case requires special treatment and will be considered

does not change the mean-square radius of the vortex ringeParately in Sec. IV.

and that the displacement of the central vortex contributes to

the angular momentum only in second order. Also, for this Ill. RATIONAL MODES, N>2

geometry, Aref12] has shown that the perturbationkhis

proportional to the perturbation in L [ie,

SH=—(Qy/2)5L=0]. Finally, we note that a perturbation

that moves each vortex on the ring radially by the same

amount, that is, makes a first-order change in the mean-

square radius, simply establishes a new equilibrium and is

uninteresting dynamically. where
Inserting Egs.(10) and (11) into Egs.(8) and (9) and B .

selecting terms with the same exponential factor yield equa- _ mN(pNT"+p™)  NZpNTM(1-p?M) 20

tions for thea,,’s. These equations can be divided into two 2(1-pN) 2(1-pY?

Fixing somem and assumingy,,~exp{—iot}, one ob-
tains from Eq.(12), after routine algebra,

oy =Sy=(PrQm) ™ Mm=0.2,...N-2, (19
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_m(N-m) N?p"""(1-p™)? mN(p""—p")

1 — 1
E(Pl_Ql)al_l— S, - E(P1+Q1)_w an-1t ypa.=0,

Pn="" 20-p92 T 21-pY

(21) (30)
B m(N—-m) ~2Np" mN(p"~"-p™) Na;+pNay-1+(¥p— Qo= w)ac=0, (31
Qm=2y+N-1-———+ =+ ——

with S;,P;,Q; given by Eqgs.(20), (21), and(22), respec-
NZ2pN~=M(1+p™)2 tively. The corresponding eigenfrequency equation takes the
2(1—p"Y)? (22 form

3 2 —
The symmetry of coefficient€20)—(22), w”+C0°tCio+Ce=0, (32

Sv==Sy-m: Pm=Pn-m, Qm=Qn-m.: (23

leads to the relations

where
Co=(Qo—ypP—25)), (33

c1=yYN(1-p?)—P1Q:+S[S;—2(Qp—yp)], (39

oy 2= o\ E. (24)
1
Hence Eq.(19) determinesN—2 values for the set ob?Z,. co== yN(1+p?)(P;+ Q1)+ ypN(P;—Q,)
The mode withm=0 has zero eigenfrequency and corre- 2
sponds to the rigid rotation of the vortex pattern through a _ 7N(1—p2)31+(7p—90)(Q1P1—Si)- (35)

fixed angle. In the limity=0, eigenfrequencied.9) coincide
with those of Eq(26) from Ref.[7], while for the case with  wjith no central vortex §=0), Egs.(29) and (30) decouple
no boundanp=0 Eq.(19) reduces to Eq25) from Ref.[8].  from Eq.(31) and the eigenvalues are found to be

As followed from Eq. (19), the mode is stable if
PmQm>0. Using the symmetry relation@3), we can show w.=S,+(P,;Q))? (36)
that P,,>0, so the stability criterion is simply

0, =—Q. (37)
min[Q,]>0, (25 . ) _ .
Frequencie$36), when combined with frequencié$9), lead
where to spectrum(26) from Ref.[7]. The formal solutionw, is
not of interest since for this normal modg= ay_,=0 and
) Qn;e  forevenN hence the vortex positions are not perturbed.
min[Qm]= Qunerya  for oddN. (26) In the absence of the boundapy=0, coefficients(33)—
(=1 (35 are substantially simplified, and one obtains from Eg.
The explicit form of Eq.(25) is given by (32)
N2—8N+8  NpV NZpN/2 21 2
_ w,=—Q, wi==(N-1)"—y. (39
7> 16 1— pN + 4(1_ pN/2)2 (27) * 0 4
for evenN and by Here the frequencw, corresponds to the mode of the rigid
displacement of the vortex pattefin the laboratory frame of
>N2—8N+7 B NpN B N(N—1)(pN*L2— pN-172) refe][;?c():v?l ]Erh(;fn rEodEaggasf zR(zr;)[fgr]equechhe eigenvalues
7T 16 1-p" 8(1-p") @ & 5

The exact analytical expressions for solutions of the cubic
25(N+1)12 (N—-1)/2y2 equation(19) are too cumbersome to be presented here. In
N°p (1+p ) o SPE ;
A(1=pN)2 (28)  the general case, the stability criterion for the cubic modes
P can be written as

for odd N. If there is no central vortexy=0, Eq. (27) fol- A7 3c, — 213472(¢c.)3—9 +27c.12<0. (39
lows from Eq.(29) of Ref.[7]. In the limit with no boundary [3¢1= (e P+ {2(co) €162 Col . (39

p=0, criteria(27) and (28) are identical to Eqs(29) from  wherec,,c;, andc, are defined in Eq33), (34), and(35),

Ref. [8]. respectively.
IV. CUBIC MODES, N>2 V. VORTICES ON LINE, N=2
For solutions of the form eXp-iwt} [Egs. (13—(15)] As already noted in Sec. Il, Eq&l3)—(15) are not valid
yield for the caseN=2 since instead of two different amplitudes

aq and ay_; there is onlya;. Three amplitudes, namely,
1 — 1 ag,aq, and o, appear in the problem. Equations for their
ot _ 2o, _ ey — 0,01, cr :
St 5 (Pt Q)= ejart 5(Qu=Pray-1~ya:=0, time evolution are derived in the same way as for Efj8)—
(299  (15. The amplitudeqay is still governed by Eq(12) and
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yields the eigenfrequency,=0, which corresponds to the arbitraryy and 0<p<1, so the stability criterion following
rigid rotation of the vortex pattern through a fixed angle. Thefrom Eq. (43) reduces to the requirement

coupled equations fa; and « are found to be

L1 o1 o
a1:|a1§(Ql+ P1)+|a1§(Q1_Pl)"’)’pac"?’acv
(40

1 - - —

(41)

. N
aC=IaC§(Q+ P)+tia.
with Q; and P; given by Eqgs.(22) and (21), respectively,

and

Q=0¢—yp+2(1-p?), P=Q¢—yp—2(1-p?.

(42
The associated eigenfrequency equation yields
*+byw?+by=0, (43)
where
by=4¥(1-p*)-Q,P,—QP, (44)

bo=47%(1-p?)?—2yQQ;(1—p)?—2yPPy(1+p)?

+Q,P,QP. (45)

Without the central vortexy=0, Eq.(40) decouples from
Eqg. (41) and the eigenfrequencies are given by

(01)>°=Q;P1, (w,)?=0QP. (46)

The first of these expressions is the same agHij.of Ref.

[7]. The second one corresponds to a normal mode with no
vortex displacementa; =0 and hence can be ignored in this

limit.
The coefficients in Egqs(40) and (41) are particularly

simple for the cas@p=0 (no boundary and one finds the

eigenvalues

(0,)2=03, (01)?=03—(2+7)2 (47)

Herew, corresponds to a mode of rigid displacement of the

vortex pattern. The second expression is identical to(Ez).
obtained in Ref[8].
The calculation of the eigenfrequencies from E4B) in

the general case is elementary, but the final formulas are P P

fairly cumbersome. It can be shown thét,J?—4b,>0 for

+[(b;)?—4bg]¥2>b;. (48)
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APPENDIX

The expression foG,, was calculated in Ref8] and is
given by

1
Gn=5(M=D[m=(N-1)]. (A1)
SumsT andF, can be written in the form
N—1 .
d exp{—i ¢y}
T=p°— —_—, A2
P ﬂpgl 1—pexp—i ¢y} A2)
N—1 .
d exp{—imey}
Fmn=P5c 2, - (A3)

Ipict 1—pexp{—igd}’
One can rewrite the sums entering Eg52) and (A3) as

N—-1

N“iiis ! (A4)
p  pct 1-pexp—igy}’
N—-1 m N—-1
1 1 1
I - S 1
pmgl 1—pexp[—igy} pm;::o P gl exp—isei,
(A5)

where the double sum in EgA5) can be easily calculated.
Equations(16) of Ref.[7] give

Nt 1 N 1

kzl I-pexg—ied (1-pY) (1-p)

Substituting Eqs(A4)—(A6) into Egs.(A2) and(A3) yields,
after some algebra,

(A6)

2 N

p Np

T:_(1_p)2+(1_pN)2(pN+N_1)r (A7)
p NpN—m N

Equations (A7) and (A8) hold for N>2. For the case
N=2, the corresponding expressions are trivially obtained
from Egs.(20)—(22):

2

1 p
Go=3. G1=0, T= (0. (A9)
= (A10)

Fo=~1p2 T mep?
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